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Abstract. Carbonic anhydrases (CAs) are involved in many physiological and pathological .events in 

organisms all over the phylogenetic tree. Over the last three decades I was involved in unravelling the 

biochemical basic phenomena connected to these enzymes and in drug design of modulators of their 

activity (inhibitors and activators). The various approaches I developed were applied to many types of 

such enzymes and allowed the discovery of many classes of highly isoform-selective inhibitors. This 

afforded new applications of the inhibitors for the management of hypoxic tumors, neuropathic pain, 

cerebral ischemia, arthritis, degenerative disorders apart the classical ones connected with these 

drugs (diuretics, antiglaucoma, antiepileptic and antiobesity action). The study of CA activators 

showed that these enzymes may represent a crucial family of new targets for improving cognition as 

well as in therapeutic areas, such as phobias, obsessive-compulsive disorder, generalized anxiety, and 

post-traumatic stress disorders, for which few efficient therapies are available. 
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1. Introduction 
I started to work on the metalloenzyme carbonic anhydrase (CAs, EC 4.2.1.1) in 1987 and in the 

first 15 years of my research the constant leitmotiv was “when will you stop working on such a simple 

and well-known enzyme”? Such queries came from friends, collaborators and sometimes professors 

with a much more important experience in chemical/biomedical research than myzelf. Indeed, CAs are 

present in all living organism, acting as catalysts for the reversible hydration of CO2 to bicarbonate and 

protons, an exquisitely simple chemical transformation [1-5]. Indeed, the enzyme was already reported 

in the ‘30s of the last century, its inhibitors (primary sulfonamides) were known since the ‘40s and the 

first clinically used agents based on CA inhibitors (CAIs) were launched in the 50s [1-6]. Thus, the 

expressed doubts were in fact quite reasonable, but fortunately did not stop me for continuing my trip 

in exploring CAs, their inhibitors, activators and their pharmacological/ biotechnological applications 

[7-10]. Why are CAs relevant may be understood from the fact that these enzymes act on carbon 

dioxide and water, two neutral molecules, which are very efficiently converted to bicarbonate and H+ 

ions, generating a weak base and a very strong acid [5-10]. As a consequence, and due to the high 

availability of CO2 from metabolic processes, this reaction constitutes the basis of pH regulation in all 

living organism [1-4]. Furthermore, CAs are metabolic enzymes [10], being involved in many other 

processes apart pH regulation, as I proposed and demonstrated recently, mainly but not exclusively in 

the tumor metabolism [1-3]. 

Eight genetically distinct CA families were reported to date in various organisms, the α-, β-, γ-, δ-, 

ζ-, η, θ, and ι-CAs. The last three classes were only recently discovered [11-17] and the -CA class 

was reported by my group [11,14]. The CA-classes distribution is rather variegated in most organisms 

investigated so far, with many of them (except animals) possessing more than one genetic family [1-

11].  
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These enzymes, as I mentioned above, are drug targets for almost 7 decades, with virtually all 

modern diuretics being developed from acetazolamide 1, the first drug belonging to the CAIs to enter 

into clinical use in 1954 [1-3]. Nowadays CAIs are still used as diuretics [18,19], systemic and 

topically acting antiglaucoma agents [20-22] but also for the management of epilepsy [23], and obesity 

[24,25], whereas some compounds are in clinical development for the management of hypoxic, 

metastatic cancers [26-29]. However, the last years saw many other interesting developments, all of 

which reported in proof-of-concept studies from my group, showing that some types of CAIs improve 

conditions for which few or no therapeutic opportunities are available, such as neuropathic pain 

[30,31], cerebral ischemia [32], and some forms of arthritis [33-35]. All these developments were only 

possible due to the fact that highly isoform-selective inhibitors were developed, based on a series of 

discoveries related to the mechanism of action of novel classes of such modulators of activity [2-8,36]. 

Crucial to these discoveries were the  rationalization of the various CA inhibition mechanism as well 

as the discovery of the CA activation mechanism, which were achieved in our laboratory in the last 30 

years and which may explain why I continued to be interested in this simple but multifaceted enzyme. 

 

2. CA inhibition/activation mechanisms  
Four CA inhibition mechanisms are known to date, being characterized in details by X-ray 

crystallography, kinetic and biophysical studies, together with an activation mechanism (Figure 1). 
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Figure 1. CA inhibition (A-D) and activation (E) mechanisms. The zinc binders incorporate a ZBG 

(A); the compounds anchoring to the nucleophile an AG that interacts with the zinc-coordinated water 

(B). The inhibitors occluding the active site entrance (C) also contain AG moieties but bind more 

externally, whereas the inhibitor binding outside the active site are shown in D. The activators bind in 

the middle of the active site and contain a proton shuttle moiety (PSM) of the amine, imidazole or 

carboxylate type (E). All these modulators incorporate various scaffolds and tails in their molecule. 

 

(i) CA inhibitors acting as zinc binders 

This is the classical CA inhibition mechanism (Fig. 1A). Being a metalloenzyme, the Zn(II) ion 

from the active site of α-CAs (or other cations which may be present in other CA genetic families, e.g., 

Fe(II), Cd(II), Co(II) or Mn(II) [1,6-8,13]) may bind metal complexing anions known to have affinity 

for cations such as but not only cyanide, thiocyanate, azide, halides, etc. [36]). The same situation is 

observed for compounds possessing a zinc-binding group (ZBG) possibly attached to a scaffold 

[37,38] – Fig. 1A. Sulfur-based, carbon- [38] or phosphorus- [39] based ZBGs were investigated, 

whereas some boron-containing derivatives (e.g., the benzoxaboroles [40]) were only recently shown 

to afford highly effective inhibitors [41]. There are many chemical classes showing effective CA 

inhibitory activity with this mechanism of action: sulfonamides, sulfamates and sulfamides, which are 

the super-classical CAIs known to date [1-3,37,38]. Acetazolamide 1 is the archetypical example, and 

it binds the Zn(II) ion from the CA active site as shown in Figure 1A: the ZBG coordinates to the zinc 

ion (through the deprotonated nitrogen of the sufonamide moiety), participates in hydrogen bond 

networks with conserved amino acid residues, a Thr and a Glu residue), whereas the scaffold interacts 

with the two halves of the active site, one hydrophobic, one hydrophilic (Figure 1A). Other CAIs 

belonging to the zinc binders are the N-substituted sulfonamides incorporating small substituting 

groups on the nitrogen (OH, NH2, Me, etc.) [38], the benzenephosponamidates [39], benzoxaboroles 

[40,41], dithio-carbamates [42], monothiocarbamates [43], xanthates [44], thiols and selenols [45,46], 

some aromatic, aliphatic or heterocyclic carboxylates [47-50], hydroxamates [51] and even carbamates 

[52]. Except sulfonamides which were reported in the 40s, and sulfamates in the 80s [1], all these 

classes of CAIs and their inhibition mechanism were reported by my group. 

 

(ii) CA inhibitors acting by anchoring to the zinc-coordinated water 

Phenol (C6H5OH) was the first compound for which this binding mode has been reported [53]. The 

OH moiety of phenol (abbreviated as AG, anchoring group, in Fig. 1B), is anchored through a strong 

hydrogen bond to the zinc coordinated water molecule whereas a second hydrogen bond involves the 

NH of Thr199 [53]. A large number of synthetic or natural product phenols were thereafter 

investigated as CAIs and for some of them the crystal structures were reported in complex with hCA 

II, making phenols a rather well studied class of CAIs [54-58]. Furthermore, the same inhibition 

mechanism though anchoring to the zinc-coordinated water molecule was observed through X-ray 

crystallography and kinetic techniques, for several other classes of compounds among which the 
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polyamines [59], sulfocoumarins [60], thioxocoumarins [61,62] and some carboxylates [47]. Again 

these new classes of CAIs were discovered by us in Florence. 

 

 (iii) CA inhibitors occluding the entrance to the active site 

A natural product coumarin was the starting point leading to the discovery of this CA inhibition 

mechanism [63] as well as a wealth of new types of CAIs belonging to various chemical classes [73-

81]. When this coumarin was co-crystallized with hCA II, the original compound was not found in the 

electronic density; instead, its hydrolysis product, a cis-2-hydroxy-cinnamic acid derivative was found 

bound in a region of the CA active site where inhibitors were never observed to bind, the entrance of 

the cavity [63] – Figure 1C. This type of inhibitor was thereafter termed as a “prodrug CA inhibitor”, 

since the esterase activity of the enzyme is needed to generate the real inhibitor, a 2-hydroxy-cinnamic 

acid derivative, form the original coumarin [63]. Furthermore, no direct interaction with the metal ion 

or with the zinc coordinated water was observed, as the inhibitor was located far away from the bottom 

of the active site, occluding its entrance. This binding mode and inhibition mechanisms are rather 

extravagant per se, considering just the structural features mentioned above, but it was thereafter 

observed that they lead to a highly desired inhibition profile for this type of compounds: the possibility 

to design highly isoform-selective inhibitors for the different human isoforms [1,6-8,63-71]. In fact, 

the binding site of these CAIs is situated in the most variable region of the CA active sites among the 

15/16 α-CA isoforms found in vertebrates, humans included [1-8]. Indeed, considering only the active 

site, the zinc coordinating residues as well as most of the bottom and mid-active site amino acid 

residues are conserved among the different CA isoforms, whereas the highest variability is observed in 

residues at the entrance of the cavity, where the hydrolyzed coumarins bind [1,6-8,63,64]. As a 

consequence, many drug design studies of coumarin [63-71] and coumarin-like compounds [72 - 77] 

were reported, all of them leading to isoform-selective CAIs. These new classes of prodrug inhibitors 

include among others, 5- and 6-ring lactones/thiolactones [72], 3,4-dihydro-1H-quinoline-2-ones [73], 

heterocoumarins, such as selenocoumarins, thioselenocoumarins, tellurocoumarins and variously 

substituted quinoline-2(1H)-ones [77].  

 

(iv) CA inhibitors binding out of the active site 

A benzoic acid derivative (2-(benzylsulfinyl)benzoic acid) was observed (by means of X-ray 

crystallography) bound outside the active site cavity (Figure 1D) of hCA II, in an adjacent 

hydrophobic pocket at the entrance of the active site [78]. This is a very intriguing binding mode, 

which does not involve the active site of the enzyme where the catalytic processes occur. Indeed, the 

COOH moiety of the inhibitor was observed to be orientated towards the active site entrance, more 

precisely towards His64 which acts as the proton shuttle residue in the catalytic cycle of these enzymes 

[1,2]. This COOH bridges the imidazole of His64 by a water molecule with which both of them make 

hydrogen bonds. In this way the side chain of His64 is blocked in its out conformation [1,2], being 

unable to participate to the catalytic cycle, which collapses [78]. 

 

(v) CA activation mechanism 

The carbonic anhydrase activators (CAAs) belong to the biogenic amines (histamine, serotonin, 

and catecholamines), amino acids, oligopeptides, or small proteins classes [79]. The general 

mechanism of action for the CA activators (CAAs) is shown in equation 1 [79,80] and was proposed 

by myself already in 1990 and then confirmed in 1997 when the first X-ray crystal structure of an 

activator bound to CA was reported (Figure 1E) [80]. 

 

EZn2+ OH2  + A  [EZn2+ OH2 - A]  [EZn2+ HO- - AH+]  EZn2+ HO- + AH+ (1) 

    enzyme - activator complexes 
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The activator binds within the enzyme active site with  the formation of enzyme – activator 

complexes in which the activator molecule (which incorporates a proton shuttling moiety, PSM, Figure 

1E) participates to the rate-determining step of the catalytic cycle, i.e., transfer of protons from the 

zinc-coordinated water to the external reaction medium, similar to the natural proton shuttle, which is 

residue His64 (in many CA isoforms) [-3]. In such enzyme-activator complexes, the proton transfer 

becomes intramolecular, being more efficient compared to the intermolecular transfer to buffer 

molecules, not bound within the enzyme cavity [81-84]. Many X-ray crystal structures with amines 

and amino acid activators were reported, among which histamine, L- and D-His bound to hCA II and 

hCA I, L- and D-Phe, D-Trp and L-adrenaline bound to hCA II, which confirmed this general CA 

activation mechanism [79-84]. The thirteen catalytically active mammalian CAs, (e.g., CA I-VA, VB, 

VI, VII, IX, XII-XV) were investigated for their interaction with a library of amino acids and amines. 

It is worth mentioning that CA targeted drug design studies on CAAs are in their infancy: most of the 

known activators were identified by screening libraries of amines and amino acids followed eventually 

by the subsequent derivatization of such compounds (e.g., histamine, histidine, etc.) [80-84]. 

Administration of CAAs (such as D-Phe) to animal models of various diseases, was shown to lead to 

enhanced discrimination learning [85]. CAAs-induced increased ERK phosphorylation which is 

necessary for memory consolidation, and recent data suggest that these enzymes may represent a 

crucial family of new targets for improving cognition as well as in therapeutic areas, such as phobias, 

obsessive-compulsive disorder, generalized anxiety, and post-traumatic stress disorders, for which few 

efficient therapies are available [85]. 

 

3. Clinically used CAIs 
There is a large number of CAIs in clinical use (Figure 2), some discovered directly as inhibitors of 

these enzymes (acetazolamide 1, methazolamide 2, ethoxzolamide 3, sulthiame 4, dichlorophenamide 

5, dorzolamide 6 and brinzolamide 7) [2,3,6-8], whereas for other derivatives the CA inhibitory 

activity was documented by us, after those compounds were developed as drugs for other purposes, 

such as antagonists of dopamine D2 receptors, for sulpiride 8 [86], antiepileptics, for topiramate 9 [87] 

and zonisamide 10 [88], sweeteners, for saccharine 11 [89], COX-2 selective inhibitors, for celecoxib 

12 [90] and valdecoxib 13 [91], histamine H2-receptor antagonists, for famotidine 14 [92], tyrosine 

kinase pan-inhibitors, for pazopanib 15 [93], etc. SLC-0111 (compound 16) is in Phase II clinical trials 

as an antitumor/antimetastatic agent was developed in my group [94-97], whereas the indoleamine-2,3-

dioxygenase inhibitor epacadostat 17, in Phase III clinical trials as an antitumor drug, was reported 

again by us to act as a CAI [98]. It should be mentioned that all these CAIs are zinc binders, as they 

possess as ZBG the sulfonamide, sulfamate or sulfamide moieties, discussed in the preceding 

paragraph. However, most of them behave as pan-inhibitors, being effective binders to most of the 12 

active CA isoforms, thus provoking side effects when used as drugs [1-8]. Only the last generation 

compounds, with an elaborate scaffold, such as the derivatives 15-17, possessing a more extended 

conformation, were observed to interact with external parts of the enzyme active site, such as for 

example its entrance or the middle part, and indeed they do show isoform-selective behavior [94-98]. 

These phenomena were extensively documented in the X-ray crystal structures of adducts of 1-17 with 

various isoforms, such as CA I, II, and IX reported by my group over the last two decades [86-98]. In 

all compounds in which the scaffold participates in important interactions with amino acid residues 

from the external part of active site, selective inhibition of various isoforms was observed, which 

explains why CAIs possessing non classical inhibition mechanisms (e.g., mechanism shown in Fig 1B-

1D) lead to isoform-selective inhibitors devoid of the serious side effects of the sulfonamides or more 

generally, first generation inhibitors [1-8]. However, all compounds shown in Fig. 2 are still in clinical 

use for various pathologies [18-28]. 
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Figure 2. Clinically used CAIs 1-15, and compounds in clinical trials, SLC-0111 16  

and epacadostat 17. 

 

Probably one of the most unexpected development in the field of CAI drug design was the 

discovery of the tail approach in 1999 [99-102]. My initial idea was to attach to the scaffold of simple 

sulfonamides (such as 4-aminobenzenesulfonamide and its derivatives or 5-amino-1,3,4-thiadiazole-2-

sulfonamide, the deacetylated acetazolamide derivative) moieties that may induce enhanced 

hydrosolubility and presumably also interactions with more external parts of the active site, e.g., the 

region at the entrance of the cavity [99]. It should be mentioned that although the X-ray structures of 

many human CA isoforms was already known in that period, around 2000, the number of inhibitor 

adducts was rather reduced. Thus, the tail approach was initially more of an intuition than a structure-

based drug design campaign, but it soon thereafter became one. Indeed, a large number of X-ray 

structures of chemically heterogeneous sulfonamides bound to CA II (and more rarely to other 

isoforms) started to appear in the next decade after the tail approach was reported [103-112], which 

allowed for a rationalization of these structural and kinetic data, also obtained by assaying large 

homologous series of sulfonamides/sulfamates/sulfamides against all the catalytically active isoforms 

in my group in Florence. The tail approach was thereafter successfully applied to other classes of 

CAIs, such as the dithiocarbamates and their derivatives [42-44], the selenols [45,46], to some 

carboxylic acids [47-50] – although these CAIs show multiple binding modes, being able to inhibit 
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CAs by all four mechanisms (i)- (iv) mentioned above – and more recently to the benzoxaboroles 

[40,41]. Virtually, all drug design studies worldwide were inspired by the tail approach in the last two 

decades after it has been reported. 

 

4. Novel applications of the isoform-selective CAIs targeting human enzymes 
(i) Cancer and metastasis 

At least three CA isoforms, the transmembrane CA IX and XII, and the cytosolic CA II, are 

involved in tumorigenesis both by regulating intra- and extracellular pH [4,9,113-115] and tumor 

metabolism [10,116]. CA IX and XII are overexpressed in tumors secondary to hypoxia through 

activation of the pathway regulated by the transcription factor HIF-1α (hypoxia inducible factor-1α) 

[1-4,113]. Starting with 2004 [113], a lot of evidence accumulated that inhibiting the transmembrane 

isoforms IX/XII leads to an impaired growth of the tumors and metastases [94], which culminated with 

the proof of concept study of Lou et al. [95] and the discovery and development of SLC-0111 in our 

laboratory [97]. The main challenges for arriving to CA IX-selective inhibitors were not few, as the 

active site of this isoform is rather similar to that of CA II [1,117]. However, the determination of its 

X-ray crystal structure by De Simone’s group in 2009 [117] was the breakthrough which helped the 

rational drug design of more effective CA IX inhibitors [1-8]. The emergence of coumarins already in 

2009 as new CA inhibitory chemotype [73] with a significant selectivity for CA IX/XII over other 

isoforms [64-77], as well as the progress done in sulfonamide chemistry with the tail approach, led to a 

considerable number of highly CA IX/XII-selective inhibitors belonging to various classes [1-10]. 

Thus, the study of the multiple binding modes of various types of inhibitors to the three isoforms 

mentioned here, CA II, IX and XII, vas decisive for validating CA IX/XII as antitumor/antimetastatic 

drug targets. Nowadays, the largest number of new publications in the field are those dealing with 

novel classes/types of CA IX/XII inhibitors [27]. 

 

(ii) Cerebral ischemia 

Another condition characterized by hypoxia, as for tumors, see discussion above, is that of cerebral 

ischemia when impaired or insufficient blood supply to the brain leads to overexpression of HIF-1α 

downstream targets, such as CA IX and XII [32]. In a proof-of-concept study, our group [32] 

demonstrated that both sulfonamide and coumarin CA IX/XII selective inhibitors were able to increase 

the neurological score (up to 40 %) in rats with permanent middle cerebral artery occlusion as an 

animal model of cerebral ischemia. Considering the fact that the therapeutic opportunities for this 

disease affecting a considerable number of patients worldwide are quite limited, this research [32] 

opens interesting possibilities for the applications of CA IX/XII-selective inhibitors in this therapeutic 

area. 

 

(iii) Neuropathic pain 

Neuropathic pain affects up to 8 % of the world population and the only effective treatment to date 

is constituted by gabapentin, which however does not work in all patients [30,31]. The relationship 

between neuropathic pain and CA inhibition was discovered by Kaila’s group [118] who demonstrated 

that spinal GABAergic networks are responsible of the bicarbonate concentration, which leads to 

depolarization via a reduction in the neuron-specific potassium-chloride (K+-Cl-) cotransporter (KCC2) 

activity. Furthermore, the same group showed that CAIs can reduce the bicarbonate-dependent 

GABAA receptors depolarization, which has as a consequence an analgesic effects [118], 

hypothesizing that probably more than one CA isoforms were involved, with hCA VII and hCA II, 

being the most relevant ones [119]. The inhibitor used in these pioneering studies of Kaila’s group was 

acetazolamide 1, which as mentioned above, is a pan-inhibitor showing a multitude of side effects 

when used for the treatment of various conditions [120,121]. Thus, a campaign to develop CA VII-

selective inhibitors was started, which led to the design of compounds with a good selectivity ratios for 

inhibition of hCA VII over other isoforms. They belong again to various classes, among which the 

https://revistadechimie.ro/
https://doi.org/10.37358/Rev


 
Revista de Chimie                                                                                                                                                                
https://revistadechimie.ro   

https://doi.org/10.37358/Rev. Chim.1949 

 

Rev. Chim., 71 (5), 2020, 1-16                                                                          8                                      https://doi.org/10.37358/RC.20.5.8107                                                           
    
 

sulfonamides [30,122-124] and the sulfamates [125] were the predominant and most effective ones. In 

many cases, the X-ray crystallography or computational methods were very useful for the design of the 

inhibitors and for rationalizing their selectivity for the target isoform hCA VII versus the off-target 

CAs [122-125]. Although many such compounds are presently available, and in animal studies of 

neuropathic pain they work quite effectively, no compound of this class progressed for the moment to 

clinical trials. 

 

(iv) Arthritis 

We reported that CA IX and XII are overexpressed in some forms of arthritis [33] and 

hypothesized that their inhibition with sulfonamides/coumarins acting as selective inhibitors may have 

a beneficial effect. This has been thereafter demonstrated in an animal model of the arthritis, providing 

the proof of concept study that these enzymes, and possibly also CA IV may be considered as drug 

targets for the management of arthritis [33-35]. Thus, several types of non-steroidal anti-inflammatory 

drugs belonging to the carboxylic acid derivatives, were conjugated to amino-tailed sulfonamides [34] 

or coumarins [35], affording hybrid derivatives, by the well-known tail approach discussed above. 

These compounds showed effective CA IX/XII inhibitory profiles and had a potent and long-lasting 

antihyperalgesic effects in a rat model of arthritis [34,35]. The same potent effects were observed for 

hybrids of CAIs of the sulfonamide/coumarin type which were decorated with carbon monoxide 

releasing moieties of the cobalt carbonyl type [126] in the same animal model of arthritis, reinforcing 

our hypothesize that CAIs may have a future for the management of this widespread disease. 

 

(v)  Neurodegenerative conditions (Alzheimer’s disease) 

Two recent studies from [127,128] showed that acetazolamide 1 and methazolamide 2 (Fig. 2) 

were effective in the prevention of mitochondrial dysfunction, caspase activation and cell death 

associated with amyloid β formation in animal models of Alzheimer’s diseases. Methazolamide and 

acetazolamide were also shown to be effective in reducing memory impairment and amyloid pathology 

in a transgenic mouse model of amyloidosis, as reported by the same group [129]. Although no drug 

design study was reported so far for CAIs potentially useful for this devastating pathology, these 

findings mentioned above and a recent rationalization [130] of the possible mechanism behind these 

interesting effects of the CAIs may open the way to novel and potentially highly relevant applications 

for this class of pharmacological agents, considering the fact that no effective anti-Alzheimer’s disease 

agents are available so far. 

 

5. Conclusions 
The wealth of possible binding modes for inhibitors/activators within the CA active site and the 

new generation isoform-selective inhibitors, most of which were discovered by me and my group, 

afforded interesting applications in new research fields, with relevant results being obtained for 

compounds involved in the management of hypoxic tumors [27,97], neuropathic pain [30,31], cerebral 

ischemia [32], arthritis [33-35] and neurodegenerative diseases, such as Alzheimer’s disease [127-

130]. The activator field, still in its infancy from the pharmacologic viewpoint, may lead to a better 

understanding of cognition but may as well lead to applications in therapeutic areas, such as phobias, 

obsessive-compulsive disorder, generalized anxiety, and post-traumatic stress disorders, for which few 

efficient therapies are available. Thus, my involvement for more than 30 years in the research field of 

just a single, yet highly multifaceted enzyme, may be considered of some relevance, although I was 

and am working on various other drug targets, such as metalloproteases [131-135], serine proteases 

[136,137] or viral proteases [138-140]. However, the work on CAs remain the most well-known one. 
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